Mechanical and Electrical Characteristics of Graphite Tailing Concrete

Author:

Liu Hongbo1,Liu Kun23ORCID,Lan Zhu1,Zhang Dashuang1

Affiliation:

1. School of Civil Engineering and Architecture, Heilongjiang University, Harbin 150080, China

2. Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150080, China

3. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150080, China

Abstract

The graphite tailing causes serious environmental pollution, and the pollution problem becomes worse and worse with the increase in graphite demands. This paper focuses on the graphite tailing concrete, which can alleviate the environment problem through utilizing graphite tailings. With the orthogonal experimental design, 16 groups of specimens were designed to investigate the compressive strength of the graphite tailing concrete, and each group had 6 specimens. The significance sequence of the influencing factors for the compressive strength was studied, including the ratio of water to cement, sand ratio, graphite tailings content, and carbon fiber content. The optimal contents of graphite tailings and carbon fiber were obtained from the further experimental study on the electrical characteristics of the graphite tailing concrete, and a regression analysis was conducted to develop the predictive mixture design relationships for the electrical resistivity of the conductive graphite tailing concrete. The experimental results show that the conductive concrete mixture containing graphite tailings and carbon fiber has satisfactory mechanical strength along with well electrical conductivity. With the increase in graphite tailings content, the compressive strength decreases slowly, but the electrical resistivity decreases much more obviously. Predictions with the proposed relationship are in reasonable agreement with experimental results. This study provides references for the graphite tailing utilization alleviating the environment problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3