Performance and Heavy Metal Analysis of Graphite Tailings Cured Using Cementitious Materials

Author:

Jiang Ruixin12,Wang Zhengjun12

Affiliation:

1. School of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150080, China

2. International Joint Laboratory of Hydrology and Hydraulic Engineering in Cold Regions of Heilongjiang Province, Harbin 150080, China

Abstract

The massive accumulation of graphite tailings causes serious environmental pollution, mainly from heavy metal pollution. Therefore, this article introduces a method of using graphite tailings as a high-content main material, cement as a small component of the auxiliary cementitious material, and clay as a substitute for cement. The compressive strength and permeability of graphite tailing–solidified material (GT, GT–Clay) were tested, and the effect of clay partially replacing cement as an auxiliary cementitious agent on GT–Clay performance was compared. In addition, inductively coupled plasma mass spectrometry (ICP) was used to analyze the effect of the graphite tailing placement time on the heavy metal content, as well as the changes in the GT heavy metal leaching concentration and its heavy metal content under outdoor freeze–thaw conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to elucidate the microstructural changes in the GT–Clay. The experimental results show that, as the substitution of clay for cement increased from 0 to 50%, the compressive strength of the 90% GT–Clay gradually decreased, and the permeability also increased. The compressive strength of 95% GT–Clay did not show significant changes, but the permeability increased, and when mixed with quicklime, gypsum, and silica fume, the permeability decreased. The Ni and As in graphite tailings fluctuated significantly with the placement time. The heavy metal leaching concentrations of the 90% GT and 95% GT were below the standard limit, and Cd, As, and Ni in GT were potential sources of pollution. The analysis of the microscopic test results showed that the hydration products of the GT–Clay included ettringite, Ca(OH)2, and calcium silicate hydrates. The hydration product stabilized and filled the gaps between the tailing particles, thereby cementing them together. Not only did it improve the mechanical strength of GT, it also reduced the permeability and heavy metal leaching rate. This study provides a new analytical approach to applying graphite tailings for environmental treatment.

Funder

research project of the Heilongjiang Provincial Key Research and Development Program

scientific research project of the Department of Ecology and Environment of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3