Affiliation:
1. The Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
Many industrial processes are operated in multiple modes due to different manufacturing strategies. Multimodality of process data is often accompanied with nonlinear and non-Gaussian characteristics, which makes data-driven monitoring more complicated. In this paper, statistics pattern analysis (SPA) is introduced to extract low- and high-order statistics from raw process data. Support vector data description (SVDD), which can deal with nonlinear and non-Gaussian problems, is applied to monitor multimode process in this paper. To improve detection performance of SVDD for training multimode data with outliers, modified local reachability density ratio (mLRDR) is proposed as a weight factor to be embedded in the weighted-SVDD (wSVDD) model, in which the local neighbors in terms of both space and time are considered. Finally, the effectiveness and superiority of our proposed method are demonstrated by the Tennessee-Eastman (TE) process and wastewater treatment process (WWTP).
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献