Deep Learning-Based Leaf Region Segmentation Using High-Resolution Super HAD CCD and ISOCELL GW1 Sensors

Author:

Talasila Srinivas12ORCID,Rawal Kirti1ORCID,Sethi Gaurav1

Affiliation:

1. School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, India

2. VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana, India

Abstract

Super HAD CCD and ISOCELL GW1 imaging sensors are used for capturing images in high-resolution cameras nowadays. These high-resolution camera sensors were used in this work to acquire black gram plant leaf diseased images in natural cultivation fields. Segmenting plant leaf regions from the black gram cultivation field images is a preliminary step for disease identification and classification. It is also helpful for the farmers to assess the plants’ health and identify the diseases in their early stages. Even though plant leaf region segmentation has been effectively handled in many contributions, no universally applicable solution exists to solve all issues. Therefore, an approach for extracting leaf region from black gram plant leaf images is presented in this article. The novelty of the proposed method is that MobileNetV2 has been utilized as a backbone network for DeepLabv3+ layers to segment plant leaf regions. The DeepLabv3+ with MobileNetV2 segmentation model exhibited superior performance compared to the other models (SegNet, U-Net, DeepLabv3+ with ResNet18, ResNet50, Xception, and InceptionResNetV2) in terms of accuracy of 99.71%, Dice of 98.72%, and Jaccard/IoU of 97.47% when data augmentation was applied. The algorithms were developed and trained using MATLAB software. Each of the experimental trials reported in this article surpasses the prior findings.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3