Simulation Parameter Test and Seepage Effect Analysis of Pile-Anchor Support for Binary Slope

Author:

Gao Xuhe1ORCID,Tian Weiping1,Zhang Zhipei2,Li Jiachun1,Qi Hongliang1,Bergillos Rafael J.

Affiliation:

1. Key Laboratory of Highway Engineering in Special Region, Ministry of Education, Chang’an University, Xi’an, Shaanxi 710064, China

2. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

Abstract

It is a difficult point in the field of geotechnical engineering to test the simulation parameters of the pile-anchor supporting structure of slope excavation and analyze the effect of seepage on the stress of the structure. This study relies on the right side slope treatment project of a highway in Guizhou Province. Aiming at the defect that the current numerical simulation parameter selection is fuzzy, the deep displacement monitoring data and P value inspection method are used to check the simulation parameters. We establish a 2D finite element model of slope excavation and support. The superposition calculation method of pore water pressure was used to analyze the stress characteristics of the slope-supporting structure after applying steady-state seepage. The analysis shows the following. ① Initial support stage: the steady-state seepage causes the axial force extreme value of the prestressed anchor cable to increase by 11.22% at this stage. ② Secondary support stage: the steady-state seepage reduces the shear limit of the antislide pile by 3.11% and the bending moment by 14.90%. ③ Comparative analysis of the two supporting phases: the newly constructed pile-anchor supporting structure has a significant effect on the original pile-anchor supporting structure. At the same time, the bending and shearing resistance of the newly added antislide piles has not been fully exerted. The research results provide new ideas for the research on the safety control ability of the slope support construction process.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3