Experimental Investigation of the Bearing Performance and Failure Characteristics of Double-Row Pile-Slab Structures in Steep Mountainous Areas

Author:

Su Rui1ORCID,Su Qian1ORCID,Cheng Peng1ORCID,Zhou Heng1ORCID,Wang Xun1ORCID,Pei Yanfei1ORCID

Affiliation:

1. Southwest Jiaotong University, Chengdu 610031, China

Abstract

Considering the pile-slab subgrade project of the Hangzhou-Huang Shan Passenger Dedicated Line as the basis, this paper conducts a 1:10 large-scale indoor model test for the horizontal bearing capacity of the pile-slab structure in steep mountainous areas to study the distribution of the pile-slab structure stress, soil pressure and structural deformation and analyze the failure mode of the structure and slope. The research shows that when the subgrade with a double-row pile-slab structure is subjected to horizontal loading in the steep slope section, the steel bars of the pile body above the sliding surface are compressed, and the steel bars of the pile body below the sliding surface are under tension. With the increase in the horizontal load, the stress of the pile body steel bar remains basically unchanged or shows a steady increase and finally sharply increases. The deformation of the bearing plate is dominated by the horizontal displacement, and the horizontal displacement reaches 7.25 mm when the plate is broken. In addition, warping deformation of the inner high and outer low occurs. When the horizontal load reaches 157 kN, shallow damage and local collapse of the slope occur, and transverse and diagonal cracks occur at the top of the pile and near the sliding surface of the pile. During the test, the pile-slab structure always deforms more than the slope, and the overall stability of the structure is good. The test is suitable for sections where the remaining sliding force is less than 770 kN/m (equivalent to a slope length of 79.123 m).

Funder

National Natural Science Foundation of China

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3