An Encrypted Traffic Identification Scheme Based on the Multilevel Structure and Variational Automatic Encoder

Author:

Zhai Jiangtao12ORCID,Shi Huaifeng3,Wang Mingqian4,Sun Zhongjun2,Xing Junjun2

Affiliation:

1. School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing, China

2. School of Electronics & Information Engineering, Jiangsu University of Science & Technology, Zhenjiang, China

3. School of Automation, Nanjing University of Science & Technology, Nanjing, China

4. School of Information Engineering, Changzhou Vocational Institute of Mechatronic Technology, Changzhou 213164, China

Abstract

With the rapid growth of the encrypted network traffic, the identification to it becomes a hot topic in information security. Since the existing methods have difficulties in identifying the application which the encrypted traffic belongs to, a new encrypted traffic identification scheme is proposed in this paper. The proposed scheme has two levels. In the first level, the entropy and estimation of Monte Carlo π value as features are used to identify the encrypted traffic by C4.5 decision tree. In the second level, the application types are distinguished from the encrypted traffic selected above. First, the variational automatic encoder is used to extract the layer features, which is combined with the frequently-used stream features. Meanwhile, the mutual information is used to reduce the dimensionality of the combination features. Finally, the random forest classifier is used to obtain the optimal result. Compared with the existing methods, the experimental results show that the proposed scheme not only has faster convergence speed but also achieves better performance in the recognition accuracy, recall rate, and F1-Measure, which is higher than 97%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3