Multiaccess Edge Computing Empowered Flying Ad Hoc Networks with Secure Deployment Using Identity-Based Generalized Signcryption

Author:

Khan Muhammad Asghar1ORCID,Ullah Insaf2,Nisar Shibli3,Noor Fazal4,Qureshi Ijaz Mansoor5,Khanzada Fahimullah6,Khattak Hizbullah2,Aziz Muhammad Adnan7

Affiliation:

1. Hamdard Institute of Engineering & Technology, Islamabad 44000, Pakistan

2. Department of Information Technology, Hazara University, Mansehra, Pakistan

3. Department of Electrical Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

4. Department of Computer Science and Information Systems, Islamic University of Madinah, Madinah 400411, Saudi Arabia

5. Department of Electrical Engineering, Air University, Islamabad 44000, Pakistan

6. Descon Engineering Limited, Lahore, Pakistan

7. Department of Electronic Engineering, ISRA University, Islamabad 44000, Pakistan

Abstract

A group of small UAVs can synergize to form a flying ad hoc network (FANET). The small UAVs are, typically, prone to security lapses because of limited onboard power, restricted computing ability, insufficient bandwidth, etc. Such limitations hinder the applicability of standard cryptographic techniques. Thus, assuring confidentiality and authentication on part of small UAV remains a far-fetched goal. We aim to address such an issue by proposing an identity-based generalized signcryption scheme. The lightweight security scheme employs multiaccess edge computing (MEC) whereby the primary UAV, as a MEC node, provides offloading to the computationally fragile member UAVs. The scheme is based on the concept of the hyperelliptic curve (HEC), which is characterized by a smaller key size and is, therefore, suitable for small UAVs. The scheme is robust since it offers confidentiality and authentication simultaneously as well as singly. Formal as well as informal security analyses and the validation results, using the Automated Validation for Internet Security Validation and Application (AVISPA) tool, second such notion. Comparative analysis with the existing schemes further authenticates the sturdiness of the proposed scheme. As a case study, the scheme is applied for monitoring crops in an agricultural field. It has been found out that the scheme promises higher security and incurs lower computational and communication costs.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3