Abstract
In recent years, FANET-related research and development has doubled, due to the increased demands of unmanned aerial vehicles (UAVs) in both military and civilian operations. Equipped with more capabilities and unique characteristics, FANET is able to play a vital role in mission-critical applications. However, these distinctive features enforce a series of guidelines to be considered for its efficient deployment. Particularly, the use of FANET for on-time data communication services presents demanding challenges in terms of energy efficiency and quality of service (QoS). Proper use of communication architecture and wireless technology will assist to solve these challenges. Therefore, in this paper, we review different communication architectures, including the existing wireless technologies, in order to provide seamless wireless connectivity. Based on the discussions, we conclude that a multi-layer UAV ad-hoc network is the most suitable architecture for networking a group of heterogeneous UAVs, while Bluetooth 5 (802.15.1) is the most favored option because of its low-cost, low power consumption, and longer transmission range for FANET. However, 802.15.1 has the limitation of a lower data rate as compared to Wi-Fi (802.11). Therefore, we propose a hybrid wireless communication scheme so as to utilize the features of the high data transmission rate of 802.11 and the low-power consumption of 802.15.1. The proposed scheme significantly reduces communication cost and improves the network performance in terms of throughput and delay. Further, simulation results using the Optimized Network Engineering Tool (OPNET) further support the effectiveness of our proposed scheme.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献