A Combined Deep Learning Method with Attention-Based LSTM Model for Short-Term Traffic Speed Forecasting

Author:

Wu Pan1ORCID,Huang Zilin1ORCID,Pian Yuzhuang1ORCID,Xu Lunhui1ORCID,Li Jinlong1ORCID,Chen Kaixun1ORCID

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, Guangdong, China

Abstract

Short-term traffic speed prediction is a promising research topic in intelligent transportation systems (ITSs), which also plays an important role in the real-time decision-making of traffic control and guidance systems. However, the urban traffic speed has strong temporal, spatial correlation and the characteristic of complex nonlinearity and randomness, which makes it challenging to accurately and efficiently forecast short-term traffic speeds. We investigate the relevant literature and found that although most methods can achieve good prediction performance with the complete sample data, when there is a certain missing rate in the database, it is difficult to maintain accuracy with these methods. Recent studies have shown that deep learning methods, especially long short-term memory (LSTM) models, have good results in short-term traffic flow prediction. Furthermore, the attention mechanism can properly assign weights to distinguish the importance of traffic time sequences, thereby further improving the computational efficiency of the prediction model. Therefore, we propose a framework for short-term traffic speed prediction, including data preprocessing module and short-term traffic prediction module. In the data preprocessing module, the missing traffic data are repaired to provide a complete dataset for subsequent prediction. In the prediction module, a combined deep learning method that is an attention-based LSTM (ATT-LSTM) model for predicting short-term traffic speed on urban roads is proposed. The proposed framework was applied to the urban road network in Nanshan District, Shenzhen, Guangdong Province, China, with a 30-day traffic speed dataset (floating car data) used as the experimental sample. Results show that the proposed method outperforms other deep learning algorithms (such as recurrent neural network (RNN) and convolutional neural network (CNN)) in terms of both calculating efficiency and prediction accuracy. The attention mechanism can significantly reduce the error of the LSTM model (up to 12.4%) and improves the prediction performance.

Funder

Guangzhou Key Areas of Research and Development Plan

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3