An Improved Deep Learning Model for Traffic Crash Prediction

Author:

Dong Chunjiao123ORCID,Shao Chunfu12,Li Juan1,Xiong Zhihua1ORCID

Affiliation:

1. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China

2. Key Laboratory of Industry of Big Data Application Technology for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China

3. Center for Transportation Research, Tickle College of Engineering, University of Tennessee, 600 Henley Street, Knoxville, 37996, Tennessee, USA

Abstract

Machine-learning technology powers many aspects of modern society. Compared to the conventional machine learning techniques that were limited in processing natural data in the raw form, deep learning allows computational models to learn representations of data with multiple levels of abstraction. In this study, an improved deep learning model is proposed to explore the complex interactions among roadways, traffic, environmental elements, and traffic crashes. The proposed model includes two modules, an unsupervised feature learning module to identify functional network between the explanatory variables and the feature representations and a supervised fine tuning module to perform traffic crash prediction. To address the unobserved heterogeneity issues in the traffic crash prediction, a multivariate negative binomial (MVNB) model is embedding into the supervised fine tuning module as a regression layer. The proposed model was applied to the dataset that was collected from Knox County in Tennessee to validate the performances. The results indicate that the feature learning module identifies relational information between the explanatory variables and the feature representations, which reduces the dimensionality of the input and preserves the original information. The proposed model that includes the MVNB regression layer in the supervised fine tuning module can better account for differential distribution patterns in traffic crashes across injury severities and provides superior traffic crash predictions. The findings suggest that the proposed model is a superior alternative for traffic crash predictions and the average accuracy of the prediction that was measured by RMSD can be improved by 84.58% and 158.27% compared to the deep learning model without the regression layer and the SVM model, respectively.

Funder

Southeastern Transportation Center

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3