Application of the Lomb-Scargle Periodogram to InvestigateHeart Rate Variability during Haemodialysis

Author:

Stewart Jill1ORCID,Stewart Paul1ORCID,Walker Tom1,Gullapudi Latha2ORCID,Eldehni Mohamed T.3,Selby Nicholas M.23ORCID,Taal Maarten W.23ORCID

Affiliation:

1. School of Health and Social Care, University of Derby, Derby, UK

2. Centre for Kidney Research and Innovation, University of Nottingham, Derby, UK

3. Renal Unit, Royal Derby Hospital, Derby, UK

Abstract

Short-term cardiovascular compensatory responses to perturbations in the circulatory system caused by haemodialysis can be investigated by the spectral analysis of heart rate variability, thus providing an important variable for categorising individual patients’ response, leading to a more personalised treatment. This is typically accomplished by resampling the irregular heart rate to generate an equidistant time series prior to spectral analysis, but resampling can further distort the data series whose interpretation can already be compromised by the presence of artefacts. The Lomb–Scargle periodogram provides a more direct method of spectral analysis as this method is specifically designed for large, irregularly sampled, and noisy datasets such as those obtained in clinical settings. However, guidelines for preprocessing patient data have been established in combination with equidistant time-series methods and their validity when used in combination with the Lomb–Scargle approach is missing from literature. This paper examines the effect of common preprocessing methods on the Lomb–Scargle power spectral density estimate using both real and synthetic heart rate data and will show that many common techniques for identifying and editing suspect data points, particularly interpolation and replacement, will distort the resulting power spectrum potentially misleading clinical interpretations of the results. Other methods are proposed and evaluated for use with the Lomb–Scargle approach leading to the main finding that suspicious data points should be excluded rather than edited, and where required, denoising of the heart rate signal can be reliably accomplished by empirical mode decomposition. Some additional methods were found to be particularly helpful when used in conjunction with the Lomb–Scargle periodogram, such as the use of a false alarm probability metric to establish whether spectral estimates are valid and help automate the assessment of valid heart rate records, potentially leading to greater use of this powerful technique in a clinical setting.

Funder

Royal Derby Hospital Renal Unit

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference41 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3