An open-access simultaneous electrocardiogram and phonocardiogram database

Author:

Kazemnejad Arsalan,Karimi Sajjad,Gordany Peiman,Clifford Gari D,Sameni RezaORCID

Abstract

Abstract Objective. The EPHNOGRAM project aimed to develop a low-cost, low-power device for simultaneous electrocardiogram (ECG) and phonocardiogram (PCG) recording, with additional channels for environmental audio to enhance PCG through active noise cancellation. The objective was to study multimodal electro-mechanical activities of the heart, offering insights into the differences and synergies between these modalities during various cardiac activity levels. Approach. We developed and tested several hardware prototypes of a simultaneous ECG-PCG acquisition device. Using this technology, we collected simultaneous ECG and PCG data from 24 healthy adults during different physical activities, including resting, walking, running, and stationary biking, in an indoor fitness center. The data were annotated using a robust software that we developed for detecting ECG R-peaks and PCG S1 and S2 components, and overseen by a human expert. We also developed machine learning models using ECG-based, PCG-based, and joint ECG-PCG features, like R–R and S1–S2 intervals, to classify physical activities and analyze electro-mechanical dynamics. Main results. The results show a significant coupling between ECG and PCG components, especially during high-intensity exercise. Notable micro-variations in S2-based heart rate show differences in the heart’s electrical and mechanical functions. The Lomb-Scargle periodogram and approximate entropy analyses confirm the higher volatility of S2-based heart rate compared to ECG-based heart rate. Correlation analysis shows stronger coupling between R–R and R-S1 intervals during high-intensity activities. Hybrid ECG-PCG features, like the R-S2 interval, were identified as more informative for physical activity classification through mRMR feature selection and SHAP value analysis. Significance. The EPHNOGRAM database, is available on PhysioNet. The database enhances our understanding of cardiac function, enabling future studies on the heart’s mechanical and electrical interrelationships. The results of this study can contribute to improved cardiac condition diagnoses. Additionally, the designed hardware has the potential for integration into wearable devices and the development of multimodal stress test technologies.

Funder

American Heart Association

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3