A Coupled Grid-Particle Method for Fluid Animation on GPU

Author:

Zhang Fengquan12ORCID,Wei Qiuming1,Wu Zhaohui23

Affiliation:

1. School of Information Science and Technology, North China University of Technology, Beijing, China

2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China

3. China Academy of Transportation Sciences, Beijing, China

Abstract

In digital production environments, high-quality visual effects play a key role in our mobile device such as game and film. The simulation of fluid animation with free surface is an important area in computer graphic. However, the tracking of fluid surface is a challenging problem because of its instability. In this paper, a coupled grid-particle method for fluid animation surface tracking and detail preserving is proposed. Firstly, based on the nonequilibrium extrapolation method, we design a novel method for reconstructing distribution functions (DFs) of interface grids of lattice Boltzmann method (LBM) and couple the reconstruction method with LBM and volume of fluid (VOF) to track the free surface, which can obtain the accurate surface. Secondly, in order to avoid the loss of details caused by weaknesses in the traditional LBM-VOF method, we design a coupled grid-particle method that not only makes full use of the advantages of the coupled grid-particle method but also realizes the two-way coupling between grid method and particle method. Furthermore, for achieving the real-time requirements of fluid animation, we use GPU parallel computing to accelerate the simulation and use an improved screen space fluid (SSF) rendering method for realistic rendering. The various experiments show that this work can track the fluid surface with high precision and preserve the details of the fluid surface, and it also achieves good real-time performance in large-scale fluid simulation.

Funder

NCUT Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3