Evaluating the Stability of Numerical Schemes for Fluid Solvers in Game Technology

Author:

Stark Craig R.1ORCID,Diver Declan A.2ORCID

Affiliation:

1. Complex Multiscale Dynamics Group, Division of Games Technology and Mathematics, Abertay University, Dundee DD1 1HG, UK

2. School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

A variety of numerical techniques have been explored to solve the shallow water equations in real-time water simulations for computer graphics applications. However, determining the stability of a numerical algorithm is a complex and involved task when a coupled set of nonlinear partial differential equations need to be solved. This paper proposes a novel and simple technique to compare the relative empirical stability of finite difference (or any grid-based scheme) algorithms by solving the inviscid Burgers’ equation to analyse their respective breaking times. To exemplify the method to evaluate numerical stability, a range of finite difference schemes is considered. The technique is effective at evaluating the relative stability of the considered schemes and demonstrates that the conservative schemes have superior stability.

Funder

Abertay University

Publisher

Hindawi Limited

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3