Research on Mandatory Lane-Changing Behavior in Highway Weaving Sections

Author:

Hao Wei1ORCID,Zhang Zhaolei1,Gao Zhibo2ORCID,Yi Kefu3ORCID,Liu Li3,Wang Jie1

Affiliation:

1. Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems, Changsha University of Science &Technology, Changsha 410205, China

2. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China

3. School of Automotive and Mechanical Engineering, Changsha University of Science &Technology, Changsha 410076, China

Abstract

As the accident-prone sections and bottlenecks, highway weaving sections will become more complicated when it comes to the mixed-traffic environments with connected and automated vehicles (CAVs) and human-driven vehicles (HVs). In order to make CAVs accurately identify the driving behavior of manual-human vehicles to avoid traffic accidents caused by lane changing, it is necessary to analyze the characteristics of the mandatory lane-changing (MCL) process in the weaving area. An analytical MCL method based on the driver’s psychological characteristics is proposed in this study. Firstly, the driver’s MLC pressure concept was proposed by leading in the distance of the off-ramp. Then, the lane-changing intention was quantified by considering the driver’s MLC pressure and tendentiousness. Finally, based on the lane-changing intention and the headway distribution of the target lane, an MLC positions probability density model was proposed to describe the distribution characteristics of the lane-changing position. Through the NGSIM data verification, the lane-changing analysis models can objectively describe the vehicle lane-changing characteristics in the actual scenarios. Compared with the traditional lane-changing model, the proposed models are more interpretable and in line with the driving intention. The results show significant improvements in the lane-changing safe recognition of CAVs in heterogeneous traffic flow (both CAVs and HVs) in the future.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3