YOLO-Highway: An Improved Highway Center Marking Detection Model for Unmanned Aerial Vehicle Autonomous Flight

Author:

Zhao Zhiwei1ORCID,Han Jianfeng2ORCID,Song Lili2ORCID

Affiliation:

1. School of Aviation, Inner Mongolia University of Technology, Hohhot 010051, China

2. School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China

Abstract

Automatic visual navigation flight of an unmanned aerial vehicle (UAV) plays an important role in the highway maintenance field. Automatic highway center marking detection is the most important part of the visual navigation flight of a UAV. In this study, the UAV-viewed highway data are collected from the UAV perspective. This paper proposes a model named the YOLO-Highway that uses an improved form of the You Only Look Once (YOLO) model to enhance the real-time detection of highway marking problems. The proposed model is mainly designed by optimizing the network structure and the loss function of the original YOLOv3 model. The proposed model is verified by the experiments using the highway center marking dataset, and the results show that the average precision (AP) of the trained model is 82.79%, and the frames per second (FPS) is 25.71 f/s. In comparison with the original YOLOv3 model, the detection accuracy of the proposed model is improved by 7.05%, and its speed is improved by 5.29 f/s. Moreover, the proposed model had stronger environmental adaptability and better detection precision and speed than the original model in complex highway scenarios. The experimental results show that the proposed YOLO-Highway model can accurately detect the highway center markings in real-time and has high robustness to changes in different environmental conditions. Therefore, the YOLO-Highway model can meet the real-time requirements of the highway center marking detection.

Funder

Key Technology Research Project in Inner Mongolia Autonomous Region

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference34 articles.

1. Identifying Asphalt Pavement Distress Using UAV LiDAR Point Cloud Data and Random Forest Classification

2. Implementation of wide-field integration of optic flow for autonomous quadrotor navigation;S. Joseph;Autonomous Robots,2009

3. Fast semi-direct monocular visual odometry;C. Forster,2013

4. Vision-based autonomous mapping and exploration using a quadrotor MAV;H. Fraundorfer

5. Real-Time Detection and Recognition of Road Traffic Signs

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3