Optimal trajectory planning algorithm for autonomous flight of multiple UAVs in small areas

Author:

Tang Yi1,Wang Zheng2

Affiliation:

1. College of Aeronautical Electromechanical Equipment Maintenance, Changsha Aeronautical Vocational and Technical College, Changsha, Hunan, China

2. Department of Aeronautical Engineering, Shijiazhuang Engineering Vocational College, Shijiazhuang, Hebei, China

Abstract

The development of science and technology requires UAV to improve the accuracy of path planning to better apply in the military field and serve the people. The research proposes to use the social spider algorithm to optimize the ant colony algorithm, and jointly build an IACA to deal with the optimal selection problem of UAV path planning. Firstly, the swarm spider algorithm is used to make a reasonable division and planning of the UAV’s flight field. Secondly, the AC is used to adjust and control the UAV’s state and path. Then, the IACA is formed to carry out performance simulation and comparison experiments on the optimal path planning of the UAV to verify the superiority of the research algorithm. The results show that the maximum number of iterations of the original AC and the IACA is 100, but the IACA under the route planning optimization reaches the convergence state in 32 generations; Moreover, when the number of iterations is about 20 generations, there will be a stable fitness value, which saves time for the experiment to find the optimal path. In the simulation experiment, it is assumed that three UAVs will form a formation to conduct the experiment, and the multiple UAVs will be subject to global track planning and repeated rolling time domain track planning. The autonomous operation time of multiple UAVs through the assembly point is (5.30 s, 5.79 s, 9.29 s). The distance between UAVs during flight is predicted. It is found that the nearest distance is 2.3309 m near t= 6.65 s, which is in line with the safety distance standard. Under the improved algorithm, the speed in all directions is also relatively gentle. All the above results show that the improved algorithm can effectively improve the iteration speed and save time.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3