Affiliation:
1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing City 210094, China
2. School of Economics and Management, Chuzhou University, Chuzhou City 239000, China
3. Intellectual Property Institute, Nanjing University of Science and Technology, Nanjing City 210094, China
Abstract
At present, there are still some problems in the document management of enterprise innovation projects, such as non-standard management, lagging update, chaotic content, insufficient information, and insufficient application. There is still a lack of effective methods to evaluate the financing ability of enterprises. To solve the above problems, high technology expertise (HNTE) is taken as the research objects. Firstly, the relationship between social audit and enterprise technological innovation is analyzed, and on this basis, combined with natural language processing (NLP), an extraction method of project document information is proposed. Secondly, the evaluation index system of enterprise financing ability is constructed based on Back Propagation Neural Network (BPNN), and the technology innovation audit system of HNTEs. Finally, combined with the actual content, the proposed document audit method is evaluated. The results show that: the average accuracy rate of the NLP-based innovation project document audit method is 91.36%, the average recall rate is 96.34%, and the average F statistical value is 95.34%. Among them, the recall rate and F statistical value are about 2.3% and 1.4% higher than manual processing, respectively. The recall rate and F value are obviously better than those of manual processing methods, and the processing time of single document based on NLP is only 87.5 s. The processing time is nearly 50 times lower than that of manual processing, which greatly improves the processing efficiency of document information. The corresponding test results of each index selected based on the evaluation of enterprise financing ability are all below 0.1, which meets the requirements of consistency. The evaluation results of BPNN model on enterprise financing ability are highly consistent with the target value, and the prediction error is controlled within 0.02, which can provide more accurate prediction results. This research obtains a more accurate prediction model of enterprise financing ability evaluation, which provides technical support for social auditing and the innovation and development of enterprise technology, and provides a feasible route for the development of BPNN in the financial field.
Funder
humanities and social sciences research in universities in Anhui province
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献