Result Prediction of Wordle Word Guessing Game Based on SVM And BP Neural Network Multi-Input-Multi-Output Regression Prediction Model

Author:

Liu Ruichen,Li Yinxi,Li Mengdan

Abstract

Wordle is a popular daily puzzle game in which players can guess a five-letter word in six or fewer attempts. In order to predict the distribution column of user participation and guessing results, this paper established a support vector machine (SVM) regression model based on the historical data set of game results to predict the number of reports on March 1, 2023. Then, by extracting attribute features such as word frequency from words, the relationship between word attribute and report quantity under difficult mode is studied through multiple regression analysis and correlation coefficient analysis. Finally, a BP neural network multi-input-multi-output regression prediction model was established. The goodness of fit (R) of the model was 0.93671, and the distribution of correct guesses of the word "EERIE" was predicted. Through this regulation, the popularity of the game can be maintained to some extent, so that the number of people playing the game can maintain stability or growth.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3