Multiple Reflective Cracks in Semirigid Base Asphalt Pavement under Traffic Load Using XFEM

Author:

Guo Lei1ORCID,Yue Jinchao1ORCID,Guo Pan2ORCID,Wang Xiaofeng3

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, Henan450001, China

2. School of Mechanics and Safety Engineering, Zhengzhou University, Henan 450001, China

3. Henan Provincial, Communications Planning & Design Institute Co., Ltd, Henan450001, China

Abstract

This paper built a three-dimensional layered structure model of semirigid base asphalt pavement with single and double transverse reflective cracks based on the Extended Finite Element Method and fatigue fracture theory. The effects of the number of cracks, crack spacing, and crack length on the stress intensity factors (KI, KII, and Keff) under moving vehicle loads were studied. The fracture life of the asphalt pavement structure was calculated based on the Pairs formula. The results demonstrate that reflective cracks in semirigid asphalt pavement are composite cracks of type I and type II under moving vehicle loads, and shear fracture is the main reason for the failure of the base. The damage to the pavement base will be accelerated with the increase in the number of cracks and the length of the cracks. As the distance between the two reflection fractures is closer, the interaction between the cracks has a superimposed enhancement effect on the crack propagation. Compared with the single nonpenetrating crack model, the fatigue life of the nonpenetrating reflective crack in the double crack pavement structure with a crack spacing of 30 cm is reduced by 46.87%. The research on the propagation mechanism of reflective cracks in this paper provides the essential theoretical and numerical basis for the design, construction, working condition evaluation, and maintenance of pavement structures.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3