Aesthetic Value Evaluation for Digital Cultural and Creative Products with Artificial Intelligence

Author:

Liang Dan1ORCID

Affiliation:

1. Department of Computer Technology and Engineering, Changchun Institute of Technology, Changchun, 130000 Jilin, China

Abstract

The domestic cultural and creative industry has abundant resource advantages and broad development space. The design for cultural and creative products has evolved rapidly with the objective to improve its quality. The cultural and creative industries have seen rapid growth in the recent years wherein digital technologies have been incorporated with the traditional methodologies. The digital cultural and creative aspect acts are extremely important in the dissemination of traditional culture on the network platform. This is also supported by the state vigorously to implement innovative industrial policies. However, the adoption of digital technology in the cultural and creative industry is a novel approach. But there exists lack of understanding in terms of its nature and development protocols. It is thus necessary to study relevant theories to guide the development of digital cultural and creative industry. The increasingly prosperous aesthetic culture, especially development for cultural and creative industries, has comprehensively improved aesthetic value of the cultural and creative products. Therefore, the methods to evaluate and realize the aesthetic value of digital, cultural, and creative products are extremely important and relevant in the present day and age. In this study, neural network is used to design an improved back propagation (BP) network in order to evaluate the aesthetic value of digital cultural and creative products. At the outset, the basic idea, structural characteristics, the learning algorithm, and its flow of functioning in the BP network are analyzed. Then, an aesthetic value evaluation model of digital cultural and creative products with BP network is developed. Next, considering the shortcomings of BP network, a segmentation adaptive strategy is used to improve the view field and step size for artificial fish swarm algorithm (AFSA). Finally, the improvised algorithm is verified wherein the simulation results reveal improvement in algorithm convergence speed as well as improvement in optimal solution accuracy as part of the adaptive improvement approach.

Funder

Practical Research on Vocational Education Helping Rural Revitalization in Jilin—Taking Digital Media Specialty as an Example

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3