Dual Solutions of Non-Newtonian Casson Fluid Flow and Heat Transfer over an Exponentially Permeable Shrinking Sheet with Viscous Dissipation

Author:

Zaib Aurang1,Bhattacharyya Krishnendu2ORCID,Uddin Md. Sharif3,Shafie Sharidan4ORCID

Affiliation:

1. Department of Mathematical Sciences, Federal Urdu University of Arts, Science & Technology, Gulshan-e-Iqbal, Karachi, Pakistan

2. Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

3. Mathematics Discipline, Khulna University, Khulna 9208, Bangladesh

4. Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia JB, 81310 Skudai, Johor, Malaysia

Abstract

The two-dimensional boundary layer flow of a non-Newtonian Casson fluid and heat transfer due to an exponentially permeable shrinking sheet with viscous dissipation is investigated. Using similarity transformations, the governing momentum and energy equations are transformed to self-similar nonlinear ODEs and then those are solved numerically by very efficient shooting method. The analysis explores many important aspects of flow and heat transfer of the aforesaid non-Newtonian fluid flow dynamics. For the steady flow of non-Newtonian Casson fluid, more amount of wall mass suction through the porous sheet is required in comparison to that of Newtonian fluid flow. Dual similarity solutions are obtained for velocity and temperature. The viscous dissipation effect has major impact on the heat transfer characteristic. In fact, heat absorption at the surface occurs and it increases due to viscous dissipation. For higher Prandtl number, the temperature inside the boundary layer reduces, but with larger Eckert number (viscous dissipation) it is enhanced.

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3