Modeling and Analysis of Unsteady Casson Fluid Flow due to an Exponentially Accelerating Plate with Thermal and Solutal Convective Boundary Conditions

Author:

Endalew Mehari Fentahun1ORCID,Sarkar Subharthi2

Affiliation:

1. Department of Mathematics, Debre Tabor University, Debre Tabor 272, Ethiopia

2. Department of Mathematics, Banwarilal Bhalotia College, Asansol 713303, India

Abstract

We intend to analyze the consequence of considering thermal radiation on time-dependent flow of the Casson fluid due to an exponentially accelerated inclined surface along with thermal as well as solutal convective boundary conditions. Fundamental equations governing an isotropic incompressible radiative Casson fluid flow are defined through a set of linear partial differential equations, and exact solutions are derived by using the Laplace transform approach. The numerical findings, obtained using MATLAB software, are presented in graphical and tabular representations based on the obtained analytical solutions of the fundamental equations. This investigation shows that the increment in thermal radiation results in the increment in fluid velocity and temperature distribution including thermal and momentum boundary layer thicknesses. Most interestingly, increasing the mass transfer coefficient results in an increment in the species concentration, velocity profiles, and mass transfer rate. However, the fluid velocity diminishes near the plate upon the increase in plate inclination. The scientific community will benefit greatly from this work since the findings can serve as benchmark solutions using numerical approaches to solve fully nonlinear flow governing problems.

Publisher

Hindawi Limited

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3