Antibody Response to Influenza Hemagglutinin Conserved Stalk Domain after Sequential Immunization with Old Vaccine Strains

Author:

Kongchanagul Alita1ORCID,Masrinoul Promsin1ORCID,Boonarkart Chompunuch2ORCID,Suptawiwat Ornpreya3ORCID,Auewarakul Prasert2ORCID

Affiliation:

1. Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand

2. Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

3. Center of Learning and Research in Celebration of HRH Princess Chulabhorn’s 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand

Abstract

Hemagglutinin (HA) is the major envelope glycoprotein and antigen on the surface of influenza virions. The glycoprotein comprises a globular head and a stalk region. While immunodominant epitopes on influenza HA head are highly variable, the stalk domain is conserved. The variability of the HA head causes the antigenic drift that made the requirement of annual update of vaccine strains. Induction of antibody against the stalk domain has been proposed as an approach for a broadly protective influenza vaccine strategy. Sequential exposure to influenza strains with highly diverse HA heads but conserved stalks have been shown to induce antibody to the low immunogenic stalk domain. Here, we tested this approach by using old influenza vaccine strains that are decades apart in evolution. Inactivated whole virion vaccine of influenza A/Puerto Rico/8/1934, A/USSR/92/1977, and A/Thailand/102/2009 (H1N1) was sequentially immunized into BALB/c mice in comparison to immunization using single strain (A/Thailand/102/2009 (H1N1)). The sequentially immunized mice developed higher levels of binding antibody to the stalk domain. These suggested that using old vaccine strains in sequential vaccination may be a possible approach to induce antibody to the conserved stalk domain.

Funder

Mahidol University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3