Parameter Estimation for Dynamical Systems Using a Deep Neural Network

Author:

Dufera Tamirat Temesgen1ORCID,Seboka Yadeta Chimdessa1ORCID,Fresneda Portillo Carlos2ORCID

Affiliation:

1. Applied Mathematics, Adama Science and Technology University, Adama 1888, Oromia, Ethiopia

2. Departamento de Métodos Cuantitativos, Universidad Loyola Andalucía, Avenida de Las Universidades, Dos Hermanas 41704, Sevilla, Spain

Abstract

The deep neural network (DNN) was applied for estimating a set of unknown parameters of a dynamical system whose measured data are given for a set of discrete time points. We developed a new vectorized algorithm that takes the number of unknowns (state variables) and number of parameters into consideration. The algorithm, first, trains the network to determine weights and biases. Next, the algorithm solves the systems of algebraic equations to estimate the parameters of the system. If the right hand side function of the system is smooth and the system have equal numbers of unknowns and parameters, the algorithm solves the algebraic equation at the discrete point where absolute error between the neural network solutions and the measured data is minimum. This improves the accuracy and reduces computational time. Several tests were carried out in linear and non-linear dynamical systems. Last, we showed that the DNN approach is more successful in terms of computational time as the number of hidden layers increases.

Funder

Ministry of Science and Innovation of the Government of Spain

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3