Distributed Network of Adaptive and Self-Reconfigurable Active Vision Systems

Author:

Shashank ,Sreedevi Indu

Abstract

The performance of a computer vision system depends on the accuracy of visual information extracted by the sensors and the system’s visual-processing capabilities. To derive optimum information from the sensed data, the system must be capable of identifying objects of interest (OOIs) and activities in the scene. Active vision systems intend to capture OOIs with the highest possible resolution to extract the optimum visual information by calibrating the configuration spaces of the cameras. As the data processing and reconfiguration of cameras are interdependent, it becomes very challenging for advanced active vision systems to perform in real time. Due to limited computational resources, model-based asymmetric active vision systems only work in known conditions and fail miserably in unforeseen conditions. Symmetric/asymmetric systems employing artificial intelligence, while they manage to tackle unforeseen environments, require iterative training and thus are not reliable for real-time applications. Thus, the contemporary symmetric/asymmetric reconfiguration systems proposed to obtain optimum configuration spaces of sensors for accurate activity tracking and scene understanding may not be adequate to tackle unforeseen conditions in real time. To address this problem, this article presents an adaptive self-reconfiguration (ASR) framework for active vision systems operating co-operatively in a distributed blockchain network. The ASR framework enables active vision systems to share their derived learning about an activity or an unforeseen environment, which learning can be utilized by other active vision systems in the network, thus lowering the time needed for learning and adaptation to new conditions. Further, as the learning duration is reduced, the duration of the reconfiguration of the cameras is also reduced, yielding better performance in terms of understanding of a scene. The ASR framework enables resource and data sharing in a distributed network of active vision systems and outperforms state-of-the-art active vision systems in terms of accuracy and latency, making it ideal for real-time applications.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference181 articles.

1. Smart Camera Networks;Reisslein;Computer,2014

2. Zhang, T., Aftab, W., Mihaylova, L., Langran-Wheeler, C., Rigby, S., Fletcher, D., Maddock, S., and Bosworth, G. Recent Advances in Video Analytics for Rail Network Surveillance for Security, Trespass and Suicide Prevention—A Survey. Sensors, 2022. 22.

3. Theagarajan, R., Pala, F., Zhang, X., and Bhanu, B. Soccer: Who has the ball? Generating visual analytics and player statistics. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

4. Wu, C., Khalili, A.H., and Aghajan, H. Multiview activity recognition in smart homes with spatio-temporal features. Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras.

5. Real-time obstacle detection and tracking for sense-and-avoid mechanism in UAVs;Bharati;IEEE Trans. Intell. Veh.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3