Artificial Intelligence-Enabled Medical Analysis for Intracranial Cerebral Hemorrhage Detection and Classification

Author:

Meng Fanhua1,Wang Jianhui2,Zhang Hongtao3,Li Wei1ORCID

Affiliation:

1. Stroke Unit, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin, China

2. Neuromedical Center, South China Hospital Affiliated to Shenzhen University, Shenzhen 518111, Guangdong, China

3. Medical Imaging Center, The Affiliated Hospital of Beihua University, Jilin 132011, Jilin, China

Abstract

Intracranial hemorrhage (ICH) becomes a crucial healthcare emergency, which requires earlier detection and accurate assessment. Owing to the increased death rate (around 40%), the earlier recognition and classification of disease using computed tomography (CT) images are necessary to ensure a favourable prediction and restrain the existence of neurologic deficits. Since the manual diagnosis approach is time-consuming, automated ICH detection and classification models using artificial intelligence (AI) models are required. With this motivation, this study introduces an AI-enabled medical analysis tool for ICH detection and classification (AIMA-ICHDC) using CT images. The proposed AIMA-ICHDC technique aims at identifying the presence of ICH and identifying the different grades. In addition, the AIMA-ICHDC technique involves the design of glowworm swarm optimization with fuzzy entropy clustering (GSO-FEC) technique for the segmentation process. Besides, the VGG-19 model was executed for generating a collection of feature vectors and the optimal mixed-kernel-based extreme learning machine (OMKELM) model is utilized as a classifier. To optimally select the weight parameter of the MKELM technique, the coyote optimization algorithm (COA) was utilized. A wide range of simulation analyses are carried out under varying aspects. As part of the AIMA-ICHDC method, ICH can be detected and graded using a single sample. For segmentation, the AIMA-ICHDC technique uses the GSO-FEC method, which is the design of glowworm swarm optimization (GSO). The comparative outcomes highlighted the betterment of the AIMA-ICHDC technique compared to the recent state-of-the-art ICH classification approaches in terms of several measures.

Funder

Jilin High-Tech Industry Development Project

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3