Arbuscular Mycorrhizal Fungi Enhance Drought Stress Tolerance by Regulating Osmotic Balance, the Antioxidant System, and the Expression of Drought-Responsive Genes in Vitis vinifera L.

Author:

Ye Qiuhong12ORCID,Wang Hua1ORCID,Li Hua1ORCID

Affiliation:

1. College of Enology, Northwest A & F University, Yangling 712100, China

2. College of Food and Bio-Engineering, Bengbu University, Bengbu 233030, China

Abstract

Background and Aims. Drought harms the growth and productivity of grapevines; it thus poses a major threat to the development of viticulture in the background of ongoing climate change. Arbuscular mycorrhizal fungi (AMF) can be used to enhance the resistance/tolerance of plants to environmental stress. The effects of AMF on the osmotic regulation, antioxidant substances, and expression of drought-responsive genes in the grapevine Vitis vinifera L. cv. Ecolly were studied. Methods and Results. The experiment was conducted in a greenhouse in a completely randomized block design with four treatments: AMF colonization, well-watered; non-AMF colonization, well-watered; AMF colonization with drought stress; and non-AMF colonization with drought stress. The concentration of sucrose and proline in the leaves was higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought stress. The concentration of malonaldehyde, hydrogen peroxide, superoxide anion, and glutathione and the activity of superoxide dismutase and peroxidase activity in leaves were higher in mycorrhizal grapevine than in nonmycorrhizal grapevine under drought conditions. AMF inoculation affected the expression of drought-responsive genes. Mycorrhization upregulated the expression of VvNCED, VvP5CS, VvSIP, VvPIP1;2, and VvTIP2;1 genes under drought stress. Conclusions. AMF could reduce the harm caused by drought stress by regulating osmosis, antioxidant activities, and the expression of key drought-responsive genes and aquaporin genes. Significance of the Study. This work provides insights into the physiological and biochemical activities influenced by AMF on grapevine under drought stress.

Funder

Program of Research and Application of Key Technologies for the Sustainable Development of the Wine Industry

Publisher

Hindawi Limited

Subject

Horticulture

Reference91 articles.

1. The physiology of plant responses to drought

2. Deficit irrigation in Mediterranean environment. What lessons have we learnt from grapevine studies?;M. Chaves;Simposium Hispano Português de Relaciones Hidricas,2010

3. Arbuscular mycorrhiza symbiosis in viticulture: a review

4. Winter chill protection of grapevines by burial: evaluation of the crawled cordon training system;S. Wang;Vitis,2016

5. Berry response to water, light and heat stresses: a Molecular and Ecophysiological Perspective;J. Pillet;Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3