Affiliation:
1. Department of Finance Management, Faculty of Humanities and social Sciences, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
2. Department of Industrial Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
Abstract
As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN), self-organizing maps (SOM), alpha-cut fuzzyc-means (α-FCM), and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, andα-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, theα-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献