Publisher
Springer Nature Singapore
Reference14 articles.
1. F.D.A. Davis, Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results (Massachusetts Institute of Technology, Cambridge, MA, USA, 1985)
2. N. Koenig-Lewis, M. Marquet, A. Palmer, A.L. Zhao, Enjoyment and social influence: predicting mobile payment adoption. Serv. Ind. J. 35, 537–554 (2015)
3. Y. Alsaawy, A. Alkhodre, M. Benaida, R.A. Khan, A comparative study of multiple regression analysis and back propagation neural network approaches for predicting financial strength of banks: an Indian perspective. WSEAS Trans. Bus. Econ. 17, 627–637 (2020)
4. J. Lara-Rubio, A.F. Villarejo-Ramos, F. Liébana-Cabanillas, Explanatory and predictive model of the adoption of P2P payment systems. Behav. Inf. Technol. 40(6), 528–541 (2021)
5. F. Liébana-Cabanillas, V. Marinković, Z.A. Kalinić, SEM-neural network approach for predicting antecedents of m-commerce acceptance. Int. J. Inf. Manag. 37, 14–24 (2017)