Intrusion Detection in Industrial Internet of Things Network-Based on Deep Learning Model with Rule-Based Feature Selection

Author:

Awotunde Joseph Bamidele1ORCID,Chakraborty Chinmay2ORCID,Adeniyi Abidemi Emmanuel3ORCID

Affiliation:

1. Department of Computer Science, University of Ilorin, Ilorin, Nigeria

2. Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Jharkhand, India

3. Department of Computer Science, Landmark University, Omu-Aran, Nigeria

Abstract

The Industrial Internet of Things (IIoT) is a recent research area that links digital equipment and services to physical systems. The IIoT has been used to generate large quantities of data from multiple sensors, and the device has encountered several issues. The IIoT has faced various forms of cyberattacks that jeopardize its capacity to supply organizations with seamless operations. Such risks result in financial and reputational damages for businesses, as well as the theft of sensitive information. Hence, several Network Intrusion Detection Systems (NIDSs) have been developed to fight and protect IIoT systems, but the collections of information that can be used in the development of an intelligent NIDS are a difficult task; thus, there are serious challenges in detecting existing and new attacks. Therefore, the study provides a deep learning-based intrusion detection paradigm for IIoT with hybrid rule-based feature selection to train and verify information captured from TCP/IP packets. The training process was implemented using a hybrid rule-based feature selection and deep feedforward neural network model. The proposed scheme was tested utilizing two well-known network datasets, NSL-KDD and UNSW-NB15. The suggested method beats other relevant methods in terms of accuracy, detection rate, and FPR by 99.0%, 99.0%, and 1.0%, respectively, for the NSL-KDD dataset, and 98.9%, 99.9%, and 1.1%, respectively, for the UNSW-NB15 dataset, according to the results of the performance comparison. Finally, simulation experiments using various evaluation metrics revealed that the suggested method is appropriate for IIOT intrusion network attack classification.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference99 articles.

1. Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT)

2. Automation and manufacturing of smart materials in Additive Manufacturing technologies using the Internet of Things towards the adoption of Industry 4.0;R. Ashima;Materials Today: Proceedings,2021

3. Recommender system for home automation using IoT and artificial intelligence

4. A survey: intrusion detection system for internet of things;T. Sherasiya;International Journal of Computer Science and Engineering (IJCSE),2016

5. Privacy and security concerns in IoT-based healthcare systems;J. B. Awotunde;Internet of Things,2021

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3