Learning State Assessment in Online Education Based on Multiple Facial Features Detection

Author:

Li Deguang1ORCID,Cui Zhanyou2ORCID,Cao Fukang1,Cui Gaoxiang1,Shen Jiaquan1,Zhang Yongxin1ORCID

Affiliation:

1. School of Information Technology, Luoyang Normal University, Luoyang 471934, China

2. College of Mechanical and Electrical Engineering, Zhengzhou Institute of Industrial Technology, Zhengzhou 451150, China

Abstract

Considering that most of online training is not effectively supervised, this article presents an online leaning state assessment approach which combines blink detection, yawn detection, and head pose estimation. Blink detection is realized by computing the eye aspect ratio and the ratio of closed eye frames to the total frames per unit time to evaluate the degree of eye fatigue. Yawn detection is implemented by computing the aspect ratio of the mouth by using the feature points of the inner lip and combining it with the time of opening mouth to distinguish the mouth state. Head pose estimation is first implemented by calculating the head rotation matrix by matching the feature points of 2D face with the 3D face model and then calculating the Euler angle of the head according to the rotation matrix to evaluate the change of the head pose. Especially in yawn detection, we employ the feature points of inner lips in the calculation of the mouth aspect ratio to avoid the impact of lip thickness of various participants. Furthermore, the blink detection, yawn detection, and head pose estimation are first calculated based on the two-dimensional grayscale image of human face, which could reduce the computational complexity and improve the real-time performance of detection. Finally, combining the values of blinking, yawning, and head pose, multiple groups of experiments are carried out to assess the state of different online learners; then, the learning state is evaluated by analyzing the numerical changes of the three characteristics. Experimental results show that our approach could effectively evaluate the state of online learning and provide support for the development of online education.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3