Abstract
The aim of this study was to develop a real-time automatic attendance system (AAS) based on Internet of Things (IoT) technology and facial recognition. A Raspberry Pi camera built into a Raspberry Pi 3B is used to transfer facial images to a cloud server. Face detection and recognition libraries are implemented on this cloud server, which thus can handle all the processes involved with the automatic recording of student attendance. In addition, this study proposes the application of data serialization processing and adaptive tolerance vis-à-vis Euclidean distance. The facial features encountered are processed using data serialization before they are saved in the SQLite database; such serialized data can easily be written and then read back from the database. When examining the differences between the facial features already stored in the SQLite databases and any new facial features, the proposed adaptive tolerance system can improve the performance of the facial recognition method applying Euclidean distance. The results of this study show that the proposed AAS can recognize multiple faces and so record attendance automatically. The AAS proposed in this study can assist in the detection of students who attempt to skip classes without the knowledge of their teachers. The problem of students being unintentionally marked present, though absent, and the problem of proxies is also resolved.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献