Comprehensive Study of Kinetics of Processes Competing during PECVD Ultrathin Silicon Layer High-Temperature Annealing

Author:

Beck Romuald B.12ORCID,Ber Kamil1

Affiliation:

1. Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

2. Centre for Advanced Materials and Technologies-CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland

Abstract

Application of low-temperature PECVD is a very tempting option for formation of ultrathin silicon layers for nanoelectronic and nanophotonic applications, as followed by annealing of this layer, regardless if executed as individual process performed in controlled ambient or during following high-temperature processes, allows for phase and content changes in the silicon layer. Understanding complex changes that can take place during such process, which depend on its temperature, conditions (e.g., oxygen availability), and timeframe, is a fundamental requirement for conscious application of such technology. It is worth realizing that nanodevices with their unprecedented variety of structures and devices require many different fabrication technologies. Hence, depending on the application in mind, different results of ultrathin silicon layer annealing may appear advantageous. During high-temperature processing (e.g., annealing) of PECVD ultrathin silicon layer, three competing effects have to be taken into account. These are amorphous silicon recrystallization and oxidation of amorphous and crystalline (as-deposited or just recrystallized from as-deposited amorphous phase) silicon (both of which by nature exhibit different kinetics). So far, most of attention has been paid to silicon recrystallization, which was justified by the fact that under experimental conditions studied (silicon multilayers) oxidation was certainly of less importance. In certain applications, the required device structure consists of single (and not multiple) ultrathin silicon layer, and thus, oxidation effects certainly have to be included into considerations. Understanding dynamics and very complex relations between these individual effects is thus mandatory for using consciously this technique and achieving needed properties of the layer. It has to be stated clearly that although the achieved results, presented in this study, refer to the silicon layers fabricated under certain conditions (particular type of PECVD reactor and process parameters), they can, however, be easily extrapolated for similar cases too. The presented below results are, to our knowledge, the first successful attempt to address these issues.

Funder

National Centre for Research and Development

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3