Signal Reconstruction Based on Probabilistic Dictionary Learning Combined with Group Sparse Representation Clustering

Author:

Liang Bin1ORCID,Liu Shuxing2

Affiliation:

1. Jiuzhou Polytechnic, Xuzhou 221116, China

2. Southwest China Institute of Electronic Technology, Chengdu 610036, China

Abstract

In order to make full use of nonlocal and local similarity and improve the efficiency and adaptability of the NPB-DL algorithm, this paper proposes a signal reconstruction algorithm based on dictionary learning algorithm combined with structure similarity clustering. Nonparametric Bayesian for Dirichlet process is firstly introduced into the prior probability modeling of clustering labels, and then, Dirichlet prior distribution is applied to the prior probability of cluster labels so as to ensure the analyticity and conjugation of the probability model. Experimental results show that the proposed algorithm is not only superior to other comparison algorithms in numerical evaluation indicators but also closer to the original image in terms of visual effects.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference33 articles.

1. Sparsity-based image denoising via dictionary learning and structural clustering;W. Dong;Computer Vision & Pattern Recognition IEEE,2019

2. Nonparametric Bayesian dictionary learning algorithm based on structural similarity;D. Daoguang;Journal on Communications,2019

3. A calculation mechanism for similarity measure with clustering an unbalanced hierarchical terminology structure;M. T. Wang;International Conference on Parallel Processing Workshops IEEE,2015

4. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics

5. Online bayesian dictionary learning for large datasets;L. Li

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3