Integration of Two-Dimensional Kernel Principal Component Analysis Plus Two-Dimensional Linear Discriminant Analysis with Convolutional Neural Network for Finger Vein Recognition

Author:

Gao Zhitao,Cai Jianxian,Shi Yanan,Hong Li,Yan Fenfen,Zhang Mengying

Abstract

High complexity and low recognition rate are two common problems with the current finger vein recognition methods. To solve these problems, this paper integrates two-dimensional kernel principal component analysis (K2DPCA) plus two-dimensional linear discriminant analysis (2DLDA) (K2DPCA+2DLDA) into convolutional neural network (CNN) to recognize finger veins. Considering the row and column correlations of the finger vein image matrix and the classes of finger vein images, the authors adopted K2DPCA and 2DLDA separately for dimensionality reduction and extraction of nonlinear features in row and column directions, producing a dimensionally reduced compressed image without row or column correlation. Taking the dimensionally reduced compressed image as the input, the CNN was introduced to learn higher-level features, making finger vein recognition more accurate and robust. The public dataset of Finger Vein USM (FV-USM) Database was adopted for experimental verification. The results show that the proposed approach effectively overcome the common defects of original image feature extraction: the insufficient feature description, and the redundancy of information. When the training reached 120 epochs, the model basically realized stable convergence, with the loss approaching zero and the recognition rate reaching 97.3%. Compared with two-directional two-dimensional Fisher principal component analysis ((2D)2FPCA), our strategy, which integrates K2DPCA+2DLDA with CNN, achieved a very high recognition rate of finger vein images.

Funder

Fundamental Research Funds for the Central Universities

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial Learning-based Data Augmentation for Palm-vein Identification;IEEE Transactions on Circuits and Systems for Video Technology;2024

2. Adversarial Contrastive Learning Based on Image Generation for Palm Vein Recognition;2023 2nd International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP);2023-10-27

3. A New Feature Extraction Method for EMG Signals;Traitement du Signal;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3