Short-Term Wind and Solar Power Prediction Based on Feature Selection and Improved Long- and Short-Term Time-Series Networks

Author:

Wang Hao1,Fu Wenjie1,Li Chong1,Li Bing1,Cheng Chao2,Gong Zenghao3,Hu Yinlong3ORCID

Affiliation:

1. Marketing Service Centre of State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050000, China

2. China Gridcom Co., Ltd., State Grid Information & Telecommunication Group, Shenzhen 518000, China

3. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China

Abstract

In terms of the problems of high feature dimension and large data redundancy in the wind and solar power prediction method, an improved prediction model is proposed by combining feature selection methods with the long- and short-term time-series network (LSTNet). The long short-term memory (LSTM) unit in the LSTNet model is replaced with the bidirectional long short-term memory (BiLSTM), which enables recursive response training for the states of hidden layers at the start and end of the sequence. For feature selection, both feature screening and dimension reduction methods are considered, including random forest (RF), grey relational analysis (GRA), and principal component analysis (PCA). Finally, based on wind and solar power data, the effectiveness of the proposed methods is verified, where the RF-LSTNet performs the best. For wind power prediction, the mean absolute percentage error is reduced by 29.7% and root mean square error is reduced by 24.1% compared with the traditional LSTNet model, and for solar power prediction, the MAPE is reduced by 12.9% and RMSE is reduced by 3.8%.

Funder

State Grid Hebei Electric Power Co., Ltd.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3