Multistep Wind Speed and Wind Power Prediction Based on a Predictive Deep Belief Network and an Optimized Random Forest

Author:

Sun Zexian1ORCID,Sun Hexu1ORCID,Zhang Jingxuan2ORCID

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology, China

2. College of Electrical Engineering, North China University of Science and Technology, China

Abstract

A variety of supervised learning methods using numerical weather prediction (NWP) data have been exploited for short-term wind power forecasting (WPF). However, the NWP data may not be available enough due to its uncertainties on initial atmospheric conditions. Thus, this study proposes a novel hybrid intelligent method to improve existing forecasting models such as random forest (RF) and artificial neural networks, for higher accuracy. First, the proposed method develops the predictive deep belief network (DBN) to perform short-term wind speed prediction (WSP). Then, the WSP data are transformed into supplementary input features in the prediction process of WPF. Second, owing to its ensemble learning and parallelization, the random forest is used as supervised forecasting model. In addition, a data driven dimension reduction procedure and a weighted voting method are utilized to optimize the random forest algorithm in the training process and the prediction process, respectively. The increasing number of training samples would cause the overfitting problem. Therefore, the k-fold cross validation (CV) technique is adopted to address this issue. Numerical experiments are performed at 15-min, 30-min, 45-min, and 24-h to indicate the superiority and signal advantages compared with existing methods in terms of forecasting accuracy and scalability.

Funder

Hebei Province Science and Technology Plan Project—Construction and Application of Wind Power “Smart Capsule” Cloud Management Platform Based on Big Data Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3