Affiliation:
1. School of Artificial Intelligence, Hebei University of Technology, China
2. College of Electrical Engineering, North China University of Science and Technology, China
Abstract
A variety of supervised learning methods using numerical weather prediction (NWP) data have been exploited for short-term wind power forecasting (WPF). However, the NWP data may not be available enough due to its uncertainties on initial atmospheric conditions. Thus, this study proposes a novel hybrid intelligent method to improve existing forecasting models such as random forest (RF) and artificial neural networks, for higher accuracy. First, the proposed method develops the predictive deep belief network (DBN) to perform short-term wind speed prediction (WSP). Then, the WSP data are transformed into supplementary input features in the prediction process of WPF. Second, owing to its ensemble learning and parallelization, the random forest is used as supervised forecasting model. In addition, a data driven dimension reduction procedure and a weighted voting method are utilized to optimize the random forest algorithm in the training process and the prediction process, respectively. The increasing number of training samples would cause the overfitting problem. Therefore, the k-fold cross validation (CV) technique is adopted to address this issue. Numerical experiments are performed at 15-min, 30-min, 45-min, and 24-h to indicate the superiority and signal advantages compared with existing methods in terms of forecasting accuracy and scalability.
Funder
Hebei Province Science and Technology Plan Project—Construction and Application of Wind Power “Smart Capsule” Cloud Management Platform Based on Big Data Technology
Subject
General Engineering,General Mathematics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献