PDNet: Improved YOLOv5 Nondeformable Disease Detection Network for Asphalt Pavement

Author:

Yang Zhen1ORCID,Li Lin12ORCID,Luo Wenting2

Affiliation:

1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China

2. College of Transportation Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China

Abstract

In the daily inspection task of the expressway, accuracy and speed are the two most important indexes to reflect the detection efficiency of nondeformation diseases of asphalt pavement. To achieve model compression, accelerated detection, and accurate identification under multiscale conditions, a lightweight algorithm (PDNet) based on improved YOLOv5 is proposed. The algorithm is improved based on the network structure of YOLOv5, and the improved network structure is called YOLO-W. Firstly, a novel cross-layer weighted cascade aggregation network (W-PAN) is proposed to replace the original YOLOv5 network. Secondly, more economical GhostC3 and ShuffleConv modules are designed to replace C3 and Conv modules in the original network model. In terms of parameter setting, CIoU is selected as the loss function of the model, and the K-Means ++ algorithm is used for anchor box clustering. Before the model training, the confrontation generation network (GAN) and Poisson migration fusion algorithm (Poisson) are used for data enhancement and the negative sample training (NST) method is used to improve the robustness of the model. Finally, Softer-NMS is used to remove the prediction box in the prediction stage. Seven common asphalt pavement disease data sets (FAFU-PD) are constructed at the same time. Compared with the original YOLOv5 algorithm, PDNet improves the scores of FAFU-PD data sets on F1-score by 10 percentage points and FPS by 77.5%.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3