A Deep Learning-Based Approach for Extraction of Positioning Feature Points in Lifting Holes

Author:

Qian Jiahui1,Xia Wenjun2,Zhao Zhangyan1,Qiu Faju3

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China

3. Ningbo Special Equipment Inspection and Research Institute, Ningbo 315020, China

Abstract

Due to uncontrollable influences of the manufacturing process and different construction environments, there are significant challenges to extracting accurate positioning points for the lifting holes in prefabricated beams. In this study, we propose a two-stage feature detection, which comprises the ADD (multi-Attention DASPP DeeplabV3+) model and the VLFGM (Voting mechanism line fitting based on Gaussian mixture model) method. Initially, the YoloV5s model is employed for image coarse localization to reduce the impacts of background noise, and the ADD model follows to segment the target region. Then, the multi-step ECA mechanism is introduced to the ADD. It can mitigate the loss of interest features in the pooling layer of the backbone as well as retain the details of the original features; DASPP is adopted to fuse features at different scales to enhance the correlation of features among channels. Finally, VLFGM is utilized to reduce the dependency of accuracy on segmentation results. The experimental results demonstrate that the proposed model achieves a mean intersection over union (mIoU) of 95.07%, with a 3.48% improvement and a mean pixel accuracy (mPA) of 99.16% on the validation set. The improved method reduces vertexes error by 30.00% (to 5.39 pixels) and centroid error by 28.93% (to 1.72 pixels), which exhibits superior stability and accuracy. This paper provides a reliable solution for visual positioning of prefabricated beams in complex environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3