Prediction of Merchandise Sales on E-Commerce Platforms Based on Data Mining and Deep Learning

Author:

Yin Xiaoting1ORCID,Tao Xiaosha1

Affiliation:

1. School of Digital Trade, Jiangxi University of Engineering, Xinyu 338000, China

Abstract

Online business has grown exponentially during the last decade, and the industries are focusing on online business more than before. However, just setting up an online store and starting selling might not work. Different machine learning and data mining techniques are needed to know the users’ preferences and know what would be best for business. According to the decision-making needs of online product sales, combined with the influencing factors of online product sales in various industries and the advantages of deep learning algorithm, this paper constructs a sales prediction model suitable for online products and focuses on evaluating the adaptability of the model in different types of online products. In the research process, the full connection model is compared with the training results of CNN, which proves the accuracy and generalization ability of CNN model. By selecting the non-deep learning model as the comparison baseline, the performance advantages of CNN model under different categories of products are proved. In addition, the experiment concludes that the unsupervised pretrained CNN model is more effective and adaptable in sales forecasting.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference18 articles.

1. Improved B-P neural network and its application in sales forecasting;J. Bi;Journal of Shandong University of Technology,201

2. E-Commerce Enterprise Supply Chain Financing Risk Assessment Based on Linked Data Mining and Edge Computing

3. Sales forecast of vending machines based on time series analysis;H. Peng;Computer Science,2015

4. E-commerce sales forecast based on commodity clustering;J. Wang;Computer System Application,2016

5. A cigarette sales prediction method based on support vector machine;M. Wu;Tobacco Science and Technology,2016

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3