Metro Train Stopping Scheme Decision Based on Multisource Data in Express-Local Train Mode

Author:

Li Jin1ORCID,Wang Yaqiu1ORCID,Zhang Shiyin2ORCID,Liu Huasheng1ORCID

Affiliation:

1. College of Transportation, Jilin University, 5988 Renmin Street, Nanguan District, Changchun, China

2. Public Security Bureau Traffic Police Detachment, Changchun, China

Abstract

The urban rail transit network has gradually realized grid operation with the increase in the coverage rate. Therefore, the stopping schemes in accordance with the trend of the passenger flow are more conducive to improving the attractiveness of the rail transit and improving the sharing rate of the urban public transit. Traditional data from a single source may not be sufficient to describe the overall trend of the passenger flow in a period of time, and the error is possible in the case of insufficient data. Based on the multisource data, the spatial weight function is introduced to fuse the point of interest data and real estate information data, from which one obtains the residential index and office index, and the cluster analysis is conducted to obtain the potential stop scheme. Then, the optimization model of the train operation plan is established, aiming at minimizing the passenger travel time and the generalized system cost, and is constrained by a series of driving conditions. Compared with the single data source, multisource data can better reflect passenger flow trends and land use characteristics. Compared with the traditional all-station stopping scheme, a reasonable setting of crossing stations and running express-local trains can better satisfy the demands of the passenger flow. Finally, the optimization of Changchun rail Transit Line 1 shows that the model can reduce the travel time of passengers and the operating cost of the rail transit company and improve the quality of service, so as to achieve a win-win situation between passengers and the rail transit company.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3