Affiliation:
1. Fakultas Teknologi Industri, Institut Teknologi Padang, Indonesia
2. Departemen Teknik Kimia, Universitas Sumatera Utara, Indonesia
Abstract
A large amount of heat energy is required for paddy drying processes to evaporate water from paddy grains. Currently, fossil fuels are being used as an energy source to heat air during the drying process. However, fossil fuels cause air pollution, climate change, and disruption of ecological balance. In this study, to reduce the dependence on fossil fuels for paddy drying, a pilot-scale biomass-assisted recirculating mixed-flow drying system (PSBA-RMFD) for drying paddy was designed, installed, and tested. In this PSBA-RMFD, the heat energy required for heating the drying air was provided only by biomass. The PSBA-RMFD comprises a biomass furnace, drying column, vibratory feeder, bucket elevator, and blower. This study is aimed at evaluating the performance of the PSBA-RMFD with a drying capacity of 400 kg/h. The performance metrics of the PSBA-RMFD were specific energy consumption (SEC), specific thermal energy consumption (STEC), specific moisture evaporation rate (SMER), thermal efficiency of the PSBA-RMFD, exergy efficiency of the drying section, and improvement potential of the dryer. From the experiments conducted in this study, the values of the aforementioned performance parameters were as follows: 0.806-8.656 kW h/kg of water evaporated; 0.385-4.136 kW h/kg of water evaporated; 0.122-1.308 kg of water evaporated/kW h; 7.82-83.99%; 15.28-25.64%; and 858.90-1355.62 W, respectively. The paddy moisture content was reduced from 20.90% wet basis (initial weight of 400 kg) to 13.30% wet basis (final weight of 364 kg) in 270 min, with an average temperature of 78.15°C and average relative humidity of 8.55%. The percentage of biomass energy used in the drying system was approximately 47.77% of the overall energy. In addition, the payback period of the PSBA-RMFD was 1.9 years.
Funder
Indonesian Ministry of Education and Culture, Research, and Technology
Reference58 articles.
1. Influence of drying conditions on the processing quality of rough rice;C. Bonazzi;Drying Technology,1997
2. Performance evaluation of reversible air flow drying in circulating dryer;D. C. Wang;International Journal of Advances in Chemical Engineering and Biological Sciences,2017
3. Development of a novel mixed flow dryer design
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献