Rolling Bearing Fault Signal Extraction Based on Stochastic Resonance-Based Denoising and VMD
Author:
Affiliation:
1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2. Liaoning Engineering Center for Vibration and Noise Control, Shenyang 110870, China
Abstract
Funder
National Natural Science Foundation of China
Publisher
Hindawi Limited
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Link
http://downloads.hindawi.com/journals/ijrm/2017/3595871.pdf
Reference35 articles.
1. Adaptive Morphological Feature Extraction and Support Vector Regressive Classification for Bearing Fault Diagnosis
2. A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection
3. Phase editing as a signal pre-processing step for automated bearing fault detection
4. Least Square Fitting for Adaptive Wavelet Generation and Automatic Prediction of Defect Size in the Bearing Using Levenberg–Marquardt Backpropagation
5. Automatic gear and bearing fault localization using vibration and acoustic signals
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rolling Bearing Fault Diagnosis Method Based on GWO-VMD-SVM;Lecture Notes in Electrical Engineering;2024
2. Bearing fault diagnosis for electric machines using motor current signals and state classification;Journal of Military Science and Technology;2023-08-25
3. Analysis of pipeline leakage signal based on adaptive weighted frequency band entropy optimized VMD algorithm;Mechanics of Advanced Materials and Structures;2023-05-16
4. A new denoising method VSCE for high-temperature shear wave electromagnetic ultrasonic defect detection at a low excitation voltage;IEEE Sensors Journal;2023
5. Application of Adaptive Filtering Based on Variational Mode Decomposition for High-Temperature Electromagnetic Acoustic Transducer Denoising;Sensors;2022-09-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3