Influence of Marble Powder and Polypropylene Fibers on the Strength and Durability Properties of Self-Compacting Concrete (SCC)

Author:

Ali Atizaz1,Hussain Zahoor23ORCID,Akbar Muhammad4,Elahi Ayub1ORCID,Bhatti Samiullah3,Imran Muhammad3,Zhang Pu2,Leslie Ndam Nembo5ORCID

Affiliation:

1. Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan

2. Department of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

3. Department of Civil Engineering, Sir Syed University of Engineering and Technology, Karachi, Pakistan

4. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China

5. University of Buea, Buea, Cameroon

Abstract

The purpose of this study was to investigate the effect of polypropylene fiber reinforced self-compacting concrete (SCC) at both the fresh and hardened stages, as well as their durability behavior. Properties of marble powder-based fiber reinforced SCC at fresh state were studied by means of slump flow diameter and flow time, V-funnel, and L-box test. The concrete properties at the hardened state were examined regarding compressive strength, split tensile strength, and flexural strength. Cement was replaced with marble powder with a substituting ratio of 4%, 8%, 12%, and 16% while polypropylene fibers were added as 0.1%, 0.2%, 0.3%, and 0.4%. The durability properties were analysed in the form of water permeability and chloride migration. In accordance with the outcomes of the tests, the workability of SCC deteriorated with an increase in fiber content, although it performed effectively at higher marble dosages. There was little impact of fibers on compressive strength and water permeability property of SCC. However, by adding the fibers in SCC improved both the split tensile strength and flexural strength by 16.92% and 11.36%, respectively. The addition of marble powder showed a synergetic effect with polypropylene fibers, which showed its applicability in SCC. The chloride resistance was improved at lower content of polypropylene fiber addition. For optimizing polypropylene fibers (pp) and marble powder substitution, the polynomial work expectation justifies the response surface technique (RSM). When a p value of 0.05 is used to analyse the variation in the (Linear-ANOVA), the model is considered statistically significant. Performance of concrete was greatly enhanced by substituting 12% marble powder with cement and adding 3% polypropylene fiber.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3