Affiliation:
1. College of Science, China Agricultural University, Beijing 100083, China
Abstract
With the development of artificial intelligence, facial expression recognition has become an important part of the current research due to its wide application potential. However, the qualities of the face features will directly affect the accuracy of the model. Based on the KDEF face public dataset, the author conducts a comprehensive analysis of the effect of linear discriminant analysis (LDA) dimensionality reduction on facial expression recognition. First, the features of face images are extracted respectively by manual method and deep learning method, which constitute 35-dimensional artificial features, 128-dimensional deep features, and the hybrid features. Second, LDA is used to reduce the dimensionality of the three feature sets. Then, machine learning models, such as Naive Bayes and decision tree, are used to analyze the results of facial expression recognition before and after LDA feature dimensionality reduction. Finally, the effects of several classical feature reduction methods on the effectiveness of facial expression recognition are evaluated. The results show that after the LDA feature dimensionality reduction being used, the facial expression recognition based on these three feature sets is improved to a certain extent, which indicates the good effect of LDA in reducing feature redundancy.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献