Microencapsulation of Ruellia tuberosa L. Aqueous Root Extracts Using Chitosan-Sodium Tripolyphosphate and Their In Vitro Biological Activities

Author:

Safitri Anna12ORCID,Roosdiana Anna1ORCID,Kurnianingsih Nia23ORCID,Fatchiyah Fatchiyah24ORCID,Mayasari Eldina1,Rachmawati Rina1

Affiliation:

1. Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Malang 65145, Jl. Veteran, Indonesia

2. Research Center for Smart Molecules of Natural Genetic Resources (SMONAGENES), Brawijaya University, Malang 65145, Jl. Veteran, Indonesia

3. Department of Physiology, Faculty of Medicine, Brawijaya University, Malang 65145, Jl. Veteran, Indonesia

4. Department of Biology, Faculty of Mathematic and Natural Sciences, Brawijaya University, Malang 65145, Jl. Veteran, Indonesia

Abstract

The current study aims to perform microencapsulation of R. tuberosa L. extracts using chitosan crosslinked to sodium tripolyphosphate (NaTPP) as wall materials by spray drying and to analyze their in vitro biological activities. The influence of manufacturing conditions, like pH, chitosan concentration, and stirrer time, was assessed. Results showed that microcapsules prepared in pH 4 with a concentration of 0.1% (w/v) chitosan, and 90 min stirring time had 51.80% encapsulation efficiency and high in vitro biological activity. These were shown by high in vitro alpha amylase inhibition and antioxidant activity with IC50 values of 50.65 μg/mL and 123.97 μg/mL, respectively. Releases of the bioactive compounds in microcapsules of R. tuberosa L. were carried out on phosphate buffer medium pH 2.2 and pH 7.4 with times release of 30, 60, 90, and 120 min. The bioactive compounds were released in pH 2.2 in 120 min at 2.48%. At pH 7.4, the active ingredients were more easily released, by 79.90% in 120 min. The microcapsules’ morphology showed a rough surface with spherical forms and the average sizes were 53.41 μm. This study supports the essential role of microencapsulation in improving plant extracts with reserved biological activities.

Funder

Brawijaya University

Publisher

Hindawi Limited

Subject

General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3