Biocrude Production through Pyrolysis of Used Tyres

Author:

Osayi Julius I.1,Iyuke Sunny1,Ogbeide Samuel E.2

Affiliation:

1. School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smut Avenue, Braamfontein, Private Bag 3, Johannesburg 2050, South Africa

2. Department of Chemical Engineering, Faculty of Engineering, University of Benin, P.M.B. 1154, Benin City, Edo State, Nigeria

Abstract

A review of the pyrolysis process of used tyre as a method of producing an alternative energy source is presented in this paper. The study reports the characteristics of used tyre materials and methods of recycling, types and principles of pyrolysis, the pyrolysis products and their composition, effects of process parameters, and kinetic models applied to pyrolysis. From publications, the proximate analysis of tyre rubber shows that it is composed of about 28.6 wt.% fixed carbon, 62 wt.% volatile material, 8.5 wt.% ash, and 0.9 wt.% moisture. Elemental analysis reveals that tyre rubber has an estimated value of 82 wt.% of C, 8 wt.% of H, 0.4 wt.% of N, 1.3 wt.% of S, 2.4 wt.% of O, and 5.9 wt.% of ash. Thermogravimetry analysis confirms that the pyrolysis of used tyre at atmospheric pressure commences at 250°C and completes at 550°C. The three primary products obtained from used tyre pyrolysis are solid residue (around 36 wt.%), liquid fraction or biocrude (around 55 wt.%), and gas fraction (around 9 wt.%). Although there is variation in the value of kinetic parameters obtained by different authors from the kinetic modeling of used tyre, the process is generally accepted as a first order reaction based on Arrhenius theory.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3