A Consensus Framework for Reliability and Mitigation of Zero-Day Attacks in IoT

Author:

Sharma Vishal1ORCID,Lee Kyungroul1,Kwon Soonhyun1,Kim Jiyoon1,Park Hyungjoon1,Yim Kangbin1,Lee Sun-Young1ORCID

Affiliation:

1. Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, Republic of Korea

Abstract

“Internet of Things” (IoT) bridges the communication barrier between the computing entities by forming a network between them. With a common solution for control and management of IoT devices, these networks are prone to all types of computing threats. Such networks may experience threats which are launched by exploitation of vulnerabilities that are left unhandled during the testing phases. These are often termed as “zero-day” vulnerabilities, and their conversion into a network attack is named as “zero-day” attack. These attacks can affect the IoT devices by exploiting the defense perimeter of the network. The existing solutions are capable of detecting such attacks but do not facilitate communication, which affects the performance of the network. In this paper, a consensus framework is proposed for mitigation of zero-day attacks in IoT networks. The proposed approach uses context behavior of IoT devices as a detection mechanism followed by alert message protocol and critical data sharing protocol for reliable communication during attack mitigation. The numerical analysis suggests that the proposed approach can serve the purpose of detection and elimination of zero-day attacks in IoT network without compromising its performance.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Study of Zero-Day Attacks;September 2023;2023-09

2. Digital-care in next generation networks: Requirements and future directions;Computer Networks;2023-04

3. DAOs & ADSs;2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS);2023-03-15

4. Analysis of Techniques for Detection and Removal of Zero-Day Attacks (ZDA);Communications in Computer and Information Science;2023

5. Security Threats to Internet of Things : A Survey;International Journal of Scientific Research in Science, Engineering and Technology;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3